Rise ' n ' Shine Convent School - Dhamdha Half Yearly Examination (2019-2020)
 Class - XII
 Subject - Mathematics

Roll No:	Date:- 21/11/2019	Time:-3 hrs	Max. Marks : 80

General Instructions :-

1. All questions are compulsory.
2. The question paper consists of 36 questions divided into four Sections A, B, C and D Section-A comprises of 20 questions of one mark each, Section - B comprises of 6 questions of 2 marks each, Section - C comprises of 6 questions of 4 marks each and Section - D comprises of 4 questions of 6 marks each
3. Use of calculator is not permitted.

SECTION - A

Q1-Q10 are multiple choice type questions. Select the correct option

Q. 1 If $y=\mathrm{a} \sin m x+b \cos m x$, then $\frac{d^{2} y}{d x^{2}}$ is equal to
(A) $-m^{2} y$
(B) $m^{2} y$
(C) $-m y$
(D) $m y$
Q. 2 Let R be a relation on set N defined by $+2 y=8$. The domain of R is
(A) $\{2,4,8\}$
(B) $\{2,4,6,8\}$
(C) $\{2,4,6$,
(D) $\{1,2,3,4\}$
Q. 3 If the function from $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{x+1}$ then $f^{-1}(2)$ is
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) 2
(D) -2
Q. 4 If $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$, then x is equal
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $-\frac{\sqrt{3}}{2}$
(D) $-\frac{1}{2}$
Q. 5 The value of $\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)$ is
(A) $\frac{\pi}{4}$
(B) $-\frac{\pi}{4}$
(C) $\frac{5 \pi}{4}$
(D) $\frac{3 \pi}{4}$
Q. 6 The value of $\cos ^{-1}(\cos 6)$ is
(A) 6
(B) $\pi-6$
(C) $\pi+6$
(D) $2 \pi-6$
Q. 7 If A is square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to
(A) A
(B) $I-A$
(C) I
(D) 3 A
Q. 8 If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, and $A^{T}+A=I_{2}$ if θ is equal to
(A) $n \pi, n \in Z$
(B) $(2 n+1) \frac{\pi}{2}, n \in Z$
(C) $2 n \pi+\frac{\pi}{3}, n \in Z$
(D) None of these
Q. 9 If A be a square order 3×3, then the value of $|\operatorname{adj}(A)|$ if matrix of $|A|=2$
(A) 4
(B) 8
(C) 16
(D) 32
Q. $10 \int x^{2} e^{x^{3}} d x$
(A) $\frac{1}{3} e^{x^{2}}+c$
(B) $\frac{1}{3} e^{x^{3}}+c$
(C) $\frac{1}{3} x^{2} e^{x^{2}}+c$
(D) $\frac{1}{3} x^{3} e^{x^{2}}+c$

Q.No 11 to \mathbf{Q}. No 15 fill in the blank

Q. 11 If f be the greatest integer function defined as $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$ and g be the modulus function defined as $g(x)=|x|$, then the value of $\operatorname{gof}\left(-\frac{5}{4}\right)$ is \qquad
Q. 12 If the following function is continuous at $x=2$

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}+3 x-10}{x-2}, & \text { if } x \neq 2 \\
K & , \text { if } x=2
\end{array} \text { then the value of } \mathrm{K}\right. \text { is }
$$

\qquad
Q. 13 If tangent to the curve $y^{2}-3 x+7=0$ at the point (h, k) is parallel to line $x-y=4$, then the value of k is \qquad
Q. 14 The degree of the differential equation $\left(\frac{d^{2} x}{d x^{2}}\right)^{3}+\sin \left(\frac{d y}{d x}\right)+1=0$ is \qquad
Q. 15 The number of arbitrary constant in the particular solution of a differential equation of second order are \qquad

(Q16-Q20) Direct answer the following questions

Q. 16 Check whether $(a-b)$ is factor of the determinant

$$
\left|\begin{array}{lll}
(a-x)^{2} & (a-y)^{2} & (a-z)^{2} \\
(b-x)^{2} & (b-y)^{2} & (b-z)^{2} \\
(c-x)^{2} & (c-y)^{2} & (c-z)^{2}
\end{array}\right| \text { or not. Give reason. }
$$

Q. 17 If $f(x)=\sqrt{x^{2}+9}$, write the value of $\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}$
Q. 18 Evaluate $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{5} x$
Q. 19 Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Q. 20 Find the approximate change in the volume of a cube of side x metres caused by increasing the side by 3%

SECTION - B

Q. 21 Find the values of a and b such that the function f defined by

CDSE	
Cousss	

$f(x)= \begin{cases}\frac{x-4}{|x-4|}+a, & \text { if } x<4 \\ a+b & \text { if } x=4 \quad \text { is continuous } \\ \frac{x-4}{|x-4|}+b & \text { if } x>4\end{cases}$
Q. 22 Integrate
$\int \frac{\sec ^{2} \mathrm{x}}{\sqrt{4-\tan ^{2} \mathrm{x}}} d x$.
Q. 23 If $e^{x+y}=x$ then prove that $\frac{d y}{d x}=\frac{1-x}{x}$
Q. 24 Find the intervals in which the function $\mathrm{f}(\mathrm{x})=6-9 x-x^{2}$ is strictly increasing or decreasing
Q. 25 Integrate
$\int \frac{1}{(x-1)(x-2)}$
Q. 26 Find the area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the line $x=0$ and $x=2$

SECTION - C

Q. 27

If $y=\log \sqrt{\frac{1+\tan x}{1-\tan x}}$, prove that $\frac{d y}{d x}=\sec 2 x$

OR

Differentiate $\sin ^{-1}\left\{\frac{2^{x+1}}{1+4^{x}}\right\}$ w.r. $t x$
Q. 28 Prove that $\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)=\frac{2 b}{a}$
Q. 29 Find general solution of following differential equation

$$
\cos ^{2} x \cdot \frac{d y}{d x}+y=\tan x
$$

Q. 30 Evaluate
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$
Q. 31 Using Integration find area of the circle of circle $x^{2}+y^{2}=16$ interior to the parabola $y^{2}=6 x$
Q. 32 Solve the system of following equations by method of matrix

$$
2 x-3 y+5 z=11,3 x+2 y-4 z=-5, x+y-2 z=-3
$$

SECTION - D

Closesuess	CBSEGuess.com

Q. 33

If $\left|\begin{array}{ccc}p & b & c \\ a & q & c \\ a & b & r\end{array}\right|=0$ and $p \neq a, q \neq b, r \neq c$
then find the value of $\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$
OR
If a, b, c are positive and unequal, showthat the value of determinant
$\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is negative
Q. 34 Show that height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$. Also find the maximum volume.
Q. 35 Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function defined by $f(x)=x^{3}-1$, then prove that f^{-1} exist and find f^{-1} Also find value of $f^{-1}(26)$ and $f^{-1}(-9)$
Q. 36 Using method of integration find the area of the triangle ABC , the coordinates whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$

